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The profound vasoconstriction and mitogenic activity 
exerted by endothelin-1 (ET-1) and other closely related 
isopeptides [endothelin-2 (ET-2) and endothelin-3 (ET-
3)] on the cardiovascular system1 is suggestive of a role for 
the abnormal production or release of endothelins in the 
pathogenesis of disease. Thus an intense effort has been 
mounted by many research groups to prepare antagonists 
of the two fully characterized endothelin receptors, E T A 
and ETB.2 The ETA receptor, which binds ET-1 and ET-2 
with greater affinity than ET-3 or the structurally similar 
snake venom toxin, sarafotoxin 6C (S6C), is principally 
located in vascular smooth muscle, where it mediates 
vasoconstriction3 and smooth muscle proliferation.4 The 
E T B receptor binds all three endothelin isopeptides (as 
well as S6C) with equal affinity and is known to mediate 
vasoconstriction in certain vascular beds (e.g. rabbit 
pulmonary artery3), as well as the release of endothelium-
derived nitric oxide.5 A number of reports have appeared 
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in the literature describing peptide endothelin receptor 
antagonists, and currently there are compounds which are 
selective for ETA (BQ 1236 and FR 1393177), ETB (IRL 
10388), and compounds which exhibit dual E T A / E T B 

antagonism (e.g., PD 1428939and PD 14506510). BQ 123, 
the prototypical ETA selective antagonist, has been shown 
to be efficacious in in vivo models of disease, most notably 
hypertension11 and acute renal failure.12 More recently, 
non-peptide antagonists of the endothelin receptors from 
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Shionogi (50-235),13 Hoffmann-La Roche (Ro 46-200514 

and Ro 47-020315), and Bristol-Myers Squibb (BMS 
182874)16 have been disclosed. In this paper, we describe 
the design, synthesis, and characterization of (1S,2E,3S)-
3-[2-(carboxymethoxy)-4-methoxyphenyl]-l-[3,4-(meth-
ylenedioxy)phenyl]-5-(prop-l-yloxy)indan-2-carboxylic acid 
(1, SB 209670), a highly potent antagonist, selective for 
the endothelin receptors. Our approach toward the 
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discovery of non-peptide endothelin receptor antagonists 
included the screening of compounds selected for their 
similarity to antagonists of other G-protein coupled 
receptors and containing features of ET-1 known to be 
important to receptor binding.17 As a result of this effort 
and additional similarity searching, compound 218 was 
identified and found to bind selectively to ETA receptors 
(K;: ETA = 7.3 ± 0.43 /iM, ETB = >30 MM).19-20 Addition­
ally, compound 2 was shown to be a weak functional 
antagonist of ETA receptors in the rat aorta (KB = 6.58 
± 0.68 MM).22 

XH NMR-derived conformational models of ET-1 sup­
ported peptidomimetic hypotheses for 2.23 Comparison 
of a 3-dimensional structure of 224 to low-energy confor­
mations of ET-1 suggested that the 1- and 3-phenyl groups 
of 2 may be mimics of two of the aromatic side chains of 
Tyr-13, Phe-14, and Trp-21 of ET-1. The carboxylic acid 
moiety of 2 was found to play an important role in binding 
of the antagonist since the corresponding methyl ester 
lacked measurable affinity for either endothelin receptor 
(Kj's > 30 fiM). If this function were to have a counterpart 
in ET-1, it was considered likely that this would be either 
the Asp-18 or C-terminal carboxyl. While it appeared 
possible that 2 could mimic a number of combinations of 
the elements of ET-1 highlighted above, our efforts 
centered initially upon an overlay which matched the 
carboxylic acid and 1- and 3-phenyl groups of the 
antagonist to Tyr-13, Phe-14, and Asp-18 of the peptide. 
In view of the electron-rich characteristics of the aromatic 
side chain of Tyr-13, this overlay suggested that incor­
poration of electron-donating substituents onto the 1- or 
3-phenyl groups of the antagonist could have a favorable 
effect on receptor binding affinity. Elaboration of an 
antagonist series based upon 2 was hampered by the 
instability of the indene nucleus;25 thus our attempts to 
improve receptor affinity were directed toward an indane 
framework. Compound 3, £rarcs,trarcs-l,3-diphenylindan-
2-carboxylic acid, has a similar binding profile (K{. ETA 

= 11.22 ± 0.68 jtM, ETB = >30 MM)20- 26 to indene 2 and 
incorporation of electron-donating substituents onto both 
the 1- and 3-phenyl moieties is beneficial for ETA receptor 
binding and also leads to measurable affinity to the E T B 
receptor subtype (compounds 5 and 6, Table 1). An 
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Table 1. l,3-Diarylindan-2-carboxylic Acids 

C02H 

compd" 

1* 

3 
4 
5 
6 
7 
8 

Ri 

3,4-methylenedioxy 

H 
4-OMe 
4-OMe 
4-OMe 
3,4-methylenedioxy 
3,4-methylenedioxy 

R2 

5-O-n-

H 
H 
H 
H 
5-OH 
5-O-n-

Pr 

Pr 

R3 

2-carboxymethoxy 
4-OMe 
H 
H 
4-OMe 
3,4-methylenedioxy 
4-OMe 
4-OMe 

KiETA^nM) 

0.43 ± 0.09 

11222 ± 677 
5666 ± 1290 
422 ± 27 
43 ±14 
15 ± 3 
11.3 ± 2.2 

KiETB^nM) 

14.7 ± 3.0 

>30000 
>30000 

2443 ± 333 
757 ± 23 
483 ± 90 

1044 ± 313 

KB' (nM) 

0.4 ± 0.04 

6161 ± 634 
6403 ± 767 
1096 ± 266 

14.4 ± 3.2 
9.9 ± 3.5 
8.6 ± 3.2 

0 All compounds are racemic unless otherwise noted. b Cloned human receptor binding, see ref 20.c ET-1-induced isolated rat aortal strip 
contraction, see ref 22. d (-t-)-Enantiomer. 

Figure 1. Stereoview of an overlay of trans,tron«-l,3-diphenylindan-2-carboxylic acid (3) (solid) with a JH NMR derived conformational 
model of ET-1 (dashed). 

electron-donating substituent at the 5-position, such as 
n-propyloxy, is desirable to facilitate synthesis27 but has 
little effect on antagonist affinity to either receptor subtype 
(compounds 7 and 8, Table 1). 

The overlay shown in Figure 1 depicts our peptidomi-
metic hypothesis for irarcs,fcrans-l,3-diphenylindan-2-
carboxylic acid, 3. In view of the importance to receptor 
binding of the C-terminal carboxylic acid moiety of ET-
l,28 this overlay suggested that the receptor affinity of 8 
might be enhanced by appendage of a group at the 
2-position of one of the phenyl substituents to mimic this 
functionality of the peptide. It was apparent, however, 
that due to the flexible nature of the carboxy terminal 
residues, the NMR-derived conformations of ET-1 alone 
could not provide the necessary information to allow 
selection of a specific side chain. To overcome this, we 
hypothesized that the conformationally rigid cyclic peptide 
antagonist BQ1236'29 (cyclo-D-Trp-D-Asp-Pro-D-Val-Leu), 
is a mimic of residues 18-21 of ET-1, and therefore its 
conformation describes to some degree the conformation 
in this region of receptor bound ET-1. In order to introduce 
the conformation of BQ 123 into the tail of ET-1 in a 
manner which would also be consistent with the pepti-
domimetic hypothesis for 3, we employed a method for 
the simultaneous generation of conformations for overlap­
ping molecules called ensemble distance geometry.30 Sets 
of conformers for ET-1, BQ 123, and 3 that are consistent 
with the peptidomimetic hypothesis of 3, the mimetic 

hypothesis of BQ 123, and that also obey NMR-derived 
distance constraints for both ET-1 and BQ 123 were 
generated. The resulting conformers for ET-1 were energy 
minimized and the lowest energy conformer is depicted in 
Figure 1. Some adjustment was made to the calculated 
positions for 3 on low energy conformers of ET-1 to provide 
a better atom to atom overlap of the phenyl substituents 
of 3 with the aromatic rings of Tyr-13 and Phe-14. These 
overlays suggested the introduction of a carboxylic acid 
approximately 4-5 A (to the carboxyl carbon) from the 
2-position of one of the two phenyl substituents.31 Using 
a chain of two or three atoms (e.g., C, N, O) to link between 
the carboxylic acid and the aromatic ring satisfies this 
distance range. For synthetic flexibility, as well as ease 
of synthesis, the oxyacetic acid side chain was selected, 
leading to compound 1. The absolute configuration of 
the more potent (+) antipode of 1 (as shown) was assigned 
on the basis of X-ray crystallographic analysis of the (-)-
amphetamine salt of the (-) antipode of l.32 

Compound 1 is a potent inhibitor of [I125] ET-1 binding 
to cloned human E T A and E T B receptors, with K\ values 
of 0.43 ± 0.09 and 14.7 ± 3.0 nM, respectively. The high 
potency of 1 is also apparent from in vitro functional 
activity, as evidenced by parallel rightward shifts in the 
concentration-response curve to ET-1 in isolated rat 
aorta,22 yielding a KB value of 0.4 ± 0.04 nM. The 
contractile response to ET-1 in this tissue has been 
demonstrated to be mediated by the E T A receptor.3 In 
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Scheme 1" 

C02Me 

0 (a) K2CO3, rc-Prl, DMF (quant); (b) NaH, dimethyl carbonate (quant); (c) piperidine, aceticacid, benzene, 3,4-(methylenedioxy)benzaldehyde, 
reflux (48%); (d) TFA (87%); (e) DDQ, dioxane (44%); (f) [4-methoxy-2-(methoxymethoxy)phenyl]magnesium bromide, ether (91%); (g) H2 
50 psi, 10% Pd-C, EtOH/EtOAc, 50 °C, (96%); (h) cat. HCl, MeOH, H20 (78%); (i) NaH, DMF, ethyl bromoacetate (71%); (j) resolution 
on Chiralpak AD column, eluant: hexane/ethanol, 1:1; (k) NaOH, H2O, dioxane then HCl, H2O (71%). 

the isolated rabbit pulmonary artery, ET-1 produces a 
contractile response mediated through E T B receptors,3 

and compound 1 antagonizes this effect with a KB value 
of 199 ± 9 nM.33 No agonist activity has been observed 
for compound 1, up to a concentration of 10 nM, in the 
isolated rat aorta and Schild analyses of the data obtained 
in the isolated rat aorta and the isolated rabbit pulmonary 
artery are consistent with it being a competitive antagonist 
at both ETA (slope = 0.96 ± 0.04, n = 6) and ETB (slope 
= 1.04 ± 0.06, n = 5) receptors. 

Compound 1 is selective for the E T A and E T B receptors 
since at a concentration of 10 nM it fails to affect functional 
activity mediated by the vasopressin-1 or a-1 adrenergic 
receptors in the isolated rat aorta or by angiotensin II 
type 1 receptors in the isolated rabbit aorta. 

The synthesis of 1 is shown in Scheme 1. Propylation 
of the phenolic hydroxyl of m-hydroxyacetophenone 9 
followed by carbomethoxylation a to the carbonyl afforded 
/3-keto ester 10. Knoevenagel condensation of 10 with 
piperonal gave 11 as a single unassigned geometrical 
isomer. Acid catalyzed cyclization of 11 followed by 
dehydrogenation of the resultant indanone led to the 
indenone 12.34 Addition of [4-methoxy-2-(methoxymethox-
y)phenyl]magnesium bromide35 to 12 proceeded in a 1,2 
manner to give the racemic indenol 13. Catalytic hydro-
genation of 13 gave racemic 14 with the all-cis arrangement 
of substituents37 on the 5-membered ring of the indane 

shown in Scheme 1. Removal of the MOM protecting 
group of 14 followed by alkylation of the free phenol with 
ethyl bromoacetate led to installation of the oxyacetic acid 
moiety on the 3-phenyl substituent, providing compound 
15. Resolution of 15 was achieved by preparative chiral 
HPLC39 and the dextrorotatory antipode of 15 when 
subjected to treatment with aqueous base underwent 
epimerization at C-2 and saponification to afford SB 
209670 (1). 

Compound 1 is a novel, highly potent, endothelin 
receptor antagonist, possessing affinity for both E T A and 
E T B subtypes and should be a valuable tool with which 
to explore possible roles for endothelin both in physiology 
and pathophysiology. 
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(24) Three-dimensional structures for 2 were built using Macromodel 
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by catalytic hydrogenation of 2) lacked measurable affinity (Ki > 
30 nM) for either the ETA or ETB receptor. 
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n-propyloxy in compound 11, is needed to facilitate the acid-
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as described for 2 in ref 24. X-ray crystallographic data for compound 
1 subsequently verified the assumption that the phenyl substituents 
would maintain orientations approximately perpendicular to the 
indane aromatic ring32 (see Figure 1). 
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ether (NaH, MOMBr, DMF) and the product converted to the 
desired Grignard reagent by reaction with magnesium in ether. 

(36) de Paulis, T.; Kumar, Y.; Johansson, L.; Ramsby, S.; Florvall, L.; 
Hall, H.; Angeby-Moller, K.; Ogren, S.-O. Potential Neuroleptic 
Agents. 3. Chemistry and Antidopaminergic Properties of 6-Meth-
oxysalicylamides. J. Med. Chem. 1985, 28, 1263-1269. 

(37) Treatment of 14 with Schwesinger's P4 base38 led to epimerization 
at C-2, giving the thermodynamically more stable C-2-epi 14. 
Further elaboration of C-2-epi 14 by the transformations h and i 
of Scheme 1 provided C-2-ept 15. The assignment of relative 
configuration of 15 and C-2-epi 15 and hence 14 and C-2-epi 14, 
was made on the basis of NOE experiments. Specifically, irradiation 
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of H-2 in 15 led to an NOE with both H-l and H-3, while similar 
irradiation of H-2 in C-2-epi 15 failed to show an NOE with either 
H-l or H-3. These observations support the all-cis arrangement of 
H-l, -2, and -3 in 15 and are consistent with a trans stereochemical 
relationship between H-2 and the hydrogens 1 and 3 in C-2-ept 15. 
Furthermore, irradiation of H-l in 15 elicited enhancement at H-3, 
while irradiation of H-3 in C-2-epi 15 produced enhancement at 
H-l, supporting the cis arrangement of the 1- and 3-aryl substituents 
in both molecules. Finally, irradiation of H-2 in C-2-epj 15, but not 
15, led to an NOE with H-6' of the 3-aryl substituent, confirming 
the cis arrangement of H-2 and the 3-aryl group in C-2-epi 15. Both 
15 and C-2-epi 15 upon treatment with aqueous lithium hydroxide 
afford 1, the configuration of which has been established by X-ray 
crystallography.32 

15 C-2-epi 15 

(38) Schwesinger, R.; Schlemper, H. Peralkylated Polyaminophosp-
hazenes- Extremely Strong, Neutral Nitrogen Bases. Angew. Chem., 
Int. Ed. Engl. 1987, 26, 1167-1169. 

(39) HPLC resolution was achieved using a Chiralpak AD 4.6-mm X 
250-mm column (eluant, ethanol/ hexanes, 1:1; flow rate, 1 mL/ 
min). Retention times (+)-15,11.5 min; (-)-15, 28.5 min. 


